An Integration of Genome-Wide Association Study and Gene Expression Profiling to Prioritize the Discovery of Novel Susceptibility Loci for Osteoporosis-Related Traits:
BMD and hip geometry are two major predictors of osteoporotic fractures, the most severe consequence of osteoporosis in elderly persons. We performed sex-specific genome-wide association studies (GWAS) for BMD at the lumbar spine and femor neck skeletal sites as well as hip geometric indices (NSA, NL, and NW) in the Framingham Osteoporosis Study and then replicated the top findings in two independent studies. Three novel loci were significant: in women, including chromosome 1p13.2 (RAP1A) for NW; in men, 2q11.2 (TBC1D8) for NSA and 18q11.2 (OSBPL1A) for NW. We confirmed a previously reported region on 8q24.12 (TNFRSF11B/OPG) for lumbar spine BMD in women. In addition, we integrated GWAS signals with eQTL in several tissues and publicly available expression signature profiling in cellular and whole-animal models, and prioritized 16 candidate genes/loci based on their potential involvement in skeletal metabolism. Among three prioritized loci (GPR177, SOX6, and CASR genes) associated with BMD in women, GPR177 and SOX6 have been successfully replicated later in a large-scale meta-analysis, but none of the non-prioritized candidates (associated with BMD) did. Our results support the concept of using expression profiling to support the candidacy of suggestive GWAS signals that may contain important genes of interest.